Nuprl Definition : shadow-inequalities

For the given index, i, divide the inequality constraints into ,
those where the i-th coefficient is >0, and those where it is <
(and ignore -- hence delete -- those where the i-th coefficient is =0)

For each as in the first part and each bs in the second part, form the 
"shadow-vec". The list of all of these is the new set of constraints
in which the i-th variable has been eliminated.

In the worst case, constraints in k+1 variables can result in
  (N/2)*(N/2) N^2/4 constraints in variables. But this does not seem
to happen in practice for typical theorem proving applications.⋅

shadow-inequalities(i;ineqs) ==
  eval evalall(map(λL.L\i;filter(λL.(L[i] =z 0);ineqs))) in
  eager-append(eager-product-map(λas,bs. shadow-vec(i;as;bs);filter(λL.0 <L[i];ineqs);filter(λL.L[i] <0;ineqs));Z)



Definitions occuring in Statement :  shadow-vec: shadow-vec(i;as;bs) list-delete: as\i select: L[n] eager-product-map: eager-product-map(f;as;bs) filter: filter(P;l) map: map(f;as) eager-append: eager-append(as;bs) evalall: evalall(t) callbyvalue: callbyvalue lt_int: i <j eq_int: (i =z j) lambda: λx.A[x] natural_number: $n
Definitions occuring in definition :  callbyvalue: callbyvalue evalall: evalall(t) map: map(f;as) list-delete: as\i eq_int: (i =z j) eager-append: eager-append(as;bs) eager-product-map: eager-product-map(f;as;bs) shadow-vec: shadow-vec(i;as;bs) filter: filter(P;l) lambda: λx.A[x] lt_int: i <j select: L[n] natural_number: $n
FDL editor aliases :  shadow-inequalities

Latex:
shadow-inequalities(i;ineqs)  ==
    eval  Z  =  evalall(map(\mlambda{}L.L\mbackslash{}i;filter(\mlambda{}L.(L[i]  =\msubz{}  0);ineqs)))  in
    eager-append(eager-product-map(\mlambda{}as,bs.  shadow-vec(i;as;bs);filter(\mlambda{}L.0  <z  L[i];
                                                                                                                            ineqs);filter(\mlambda{}L.L[i]  <z  0;ineqs));Z)



Date html generated: 2016_07_08-PM-04_48_19
Last ObjectModification: 2015_12_14-PM-07_03_51

Theory : omega


Home Index