Nuprl Definition : per-product

per-product(A;a.B[a]) ==
  pertype(λa,b. uand(ispair(a) tt;uand(ispair(b) tt;uand((fst(a)) (fst(b)) ∈ A;(snd(a)) (snd(b)) ∈ B[fst(a)] 
                                                                                     supposing (fst(a))
                                                                                     (fst(b))
                                                                                     ∈ A))))



Definitions occuring in Statement :  uand: uand(A;B) pertype: pertype(R) bfalse: ff btrue: tt uimplies: supposing a pi1: fst(t) pi2: snd(t) ispair: if is pair then otherwise b lambda: λx.A[x] sqequal: t equal: t ∈ T
Definitions occuring in definition :  pertype: pertype(R) lambda: λx.A[x] sqequal: t ispair: if is pair then otherwise b bfalse: ff btrue: tt uand: uand(A;B) uimplies: supposing a equal: t ∈ T pi1: fst(t) pi2: snd(t)
FDL editor aliases :  per-product

Latex:
per-product(A;a.B[a])  ==
    pertype(\mlambda{}a,b.  uand(ispair(a)  \msim{}  tt;uand(ispair(b)  \msim{}  tt;uand((fst(a))
                              =  (fst(b));(snd(a))  =  (snd(b))  supposing  (fst(a))  =  (fst(b))))))



Date html generated: 2016_05_13-PM-03_54_12
Last ObjectModification: 2015_09_22-PM-05_45_32

Theory : per!type


Home Index