Nuprl Definition : least-equiv
least-equiv(A;R) ==  λx,y. ((R x y) ∨ (R y x))^*
Definitions occuring in Statement : 
transitive-reflexive-closure: R^*, 
or: P ∨ Q, 
apply: f a, 
lambda: λx.A[x]
Definitions occuring in definition : 
transitive-reflexive-closure: R^*, 
lambda: λx.A[x], 
or: P ∨ Q, 
apply: f a
FDL editor aliases : 
least-equiv
Latex:
least-equiv(A;R)  ==    \mlambda{}x,y.  ((R  x  y)  \mvee{}  (R  y  x))\^{}*
Date html generated:
2018_05_21-PM-00_51_45
Last ObjectModification:
2018_01_08-AM-01_04_30
Theory : relations2
Home
Index