Nuprl Definition : rel-confluent

rel-confluent(T;x,y.R[x; y]) ==  ∀x,y,z:T.  (R[x; y]  R[x; z]  (∃w:T. (R[y; w] ∧ R[z; w])))



Definitions occuring in Statement :  all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions occuring in definition :  all: x:A. B[x] implies:  Q exists: x:A. B[x] and: P ∧ Q
FDL editor aliases :  rel-confluent

Latex:
rel-confluent(T;x,y.R[x;  y])  ==    \mforall{}x,y,z:T.    (R[x;  y]  {}\mRightarrow{}  R[x;  z]  {}\mRightarrow{}  (\mexists{}w:T.  (R[y;  w]  \mwedge{}  R[z;  w])))



Date html generated: 2019_10_15-AM-10_24_33
Last ObjectModification: 2019_08_16-PM-02_32_26

Theory : relations2


Home Index