Nuprl Definition : rel_plus
R+ ==  λx,y. ∃n:ℕ+. (x R^n y)
Definitions occuring in Statement : 
rel_exp: R^n
, 
nat_plus: ℕ+
, 
infix_ap: x f y
, 
exists: ∃x:A. B[x]
, 
lambda: λx.A[x]
Definitions occuring in definition : 
lambda: λx.A[x]
, 
exists: ∃x:A. B[x]
, 
nat_plus: ℕ+
, 
infix_ap: x f y
, 
rel_exp: R^n
FDL editor aliases : 
rel_plus
Latex:
R\msupplus{}  ==    \mlambda{}x,y.  \mexists{}n:\mBbbN{}\msupplus{}.  (x  rel\_exp(T;  R;  n)  y)
Date html generated:
2016_05_14-PM-03_51_25
Last ObjectModification:
2015_09_22-PM-06_01_46
Theory : relations2
Home
Index