Nuprl Definition : rel_plus

R+ ==  λx,y. ∃n:ℕ+(x R^n y)



Definitions occuring in Statement :  rel_exp: R^n nat_plus: + infix_ap: y exists: x:A. B[x] lambda: λx.A[x]
Definitions occuring in definition :  lambda: λx.A[x] exists: x:A. B[x] nat_plus: + infix_ap: y rel_exp: R^n
FDL editor aliases :  rel_plus

Latex:
R\msupplus{}  ==    \mlambda{}x,y.  \mexists{}n:\mBbbN{}\msupplus{}.  (x  rel\_exp(T;  R;  n)  y)



Date html generated: 2016_05_14-PM-03_51_25
Last ObjectModification: 2015_09_22-PM-06_01_46

Theory : relations2


Home Index