Nuprl Definition : union-continuous
union-continuous{i:l}(T.F[T]) == ∀[I:Type]. ∀[X:I ⟶ Type]. (⋃n:I.F[X n] ⊆r F[⋃n:I.(X n)])
Definitions occuring in Statement :
subtype_rel: A ⊆r B
,
tunion: ⋃x:A.B[x]
,
uall: ∀[x:A]. B[x]
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions occuring in definition :
uall: ∀[x:A]. B[x]
,
function: x:A ⟶ B[x]
,
universe: Type
,
subtype_rel: A ⊆r B
,
tunion: ⋃x:A.B[x]
,
apply: f a
FDL editor aliases :
union-continuous
Latex:
union-continuous\{i:l\}(T.F[T]) == \mforall{}[I:Type]. \mforall{}[X:I {}\mrightarrow{} Type]. (\mcup{}n:I.F[X n] \msubseteq{}r F[\mcup{}n:I.(X n)])
Date html generated:
2016_05_13-PM-04_10_17
Last ObjectModification:
2015_09_22-PM-05_45_55
Theory : subtype_1
Home
Index