Nuprl Definition : W-type
W-type(A; a.B[a]) ==  {w:co-W(A;a.B[a])| ∀p:ℕ ⟶ a:A ⟶ (B[a]?). W-bars(w;p)} 
Definitions occuring in Statement : 
W-bars: W-bars(w;p), 
co-W: co-W(A;a.B[a]), 
nat: ℕ, 
all: ∀x:A. B[x], 
unit: Unit, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
union: left + right
Definitions occuring in definition : 
set: {x:A| B[x]} , 
co-W: co-W(A;a.B[a]), 
all: ∀x:A. B[x], 
nat: ℕ, 
function: x:A ⟶ B[x], 
union: left + right, 
unit: Unit, 
W-bars: W-bars(w;p)
Latex:
W-type(A;  a.B[a])  ==    \{w:co-W(A;a.B[a])|  \mforall{}p:\mBbbN{}  {}\mrightarrow{}  a:A  {}\mrightarrow{}  (B[a]?).  W-bars(w;p)\} 
Date html generated:
2016_05_15-PM-10_06_47
Last ObjectModification:
2015_09_23-AM-08_22_17
Theory : bar!induction
Home
Index