Nuprl Definition : W-type

W-type(A; a.B[a]) ==  {w:co-W(A;a.B[a])| ∀p:ℕ ⟶ a:A ⟶ (B[a]?). W-bars(w;p)} 



Definitions occuring in Statement :  W-bars: W-bars(w;p) co-W: co-W(A;a.B[a]) nat: all: x:A. B[x] unit: Unit set: {x:A| B[x]}  function: x:A ⟶ B[x] union: left right
Definitions occuring in definition :  set: {x:A| B[x]}  co-W: co-W(A;a.B[a]) all: x:A. B[x] nat: function: x:A ⟶ B[x] union: left right unit: Unit W-bars: W-bars(w;p)

Latex:
W-type(A;  a.B[a])  ==    \{w:co-W(A;a.B[a])|  \mforall{}p:\mBbbN{}  {}\mrightarrow{}  a:A  {}\mrightarrow{}  (B[a]?).  W-bars(w;p)\} 



Date html generated: 2016_05_15-PM-10_06_47
Last ObjectModification: 2015_09_23-AM-08_22_17

Theory : bar!induction


Home Index