Nuprl Definition : compact-type

compact-type(T) ==  ∀p:T ⟶ 𝔹((∃x:T. ff) ∨ (∀x:T. tt))



Definitions occuring in Statement :  bfalse: ff btrue: tt bool: 𝔹 all: x:A. B[x] exists: x:A. B[x] or: P ∨ Q apply: a function: x:A ⟶ B[x] equal: t ∈ T
Definitions occuring in definition :  function: x:A ⟶ B[x] or: P ∨ Q exists: x:A. B[x] bfalse: ff all: x:A. B[x] equal: t ∈ T bool: 𝔹 apply: a btrue: tt
FDL editor aliases :  compact-type

Latex:
compact-type(T)  ==    \mforall{}p:T  {}\mrightarrow{}  \mBbbB{}.  ((\mexists{}x:T.  p  x  =  ff)  \mvee{}  (\mforall{}x:T.  p  x  =  tt))



Date html generated: 2016_05_15-PM-01_45_29
Last ObjectModification: 2015_09_23-AM-07_37_04

Theory : basic


Home Index