Nuprl Definition : nat-inf

ℕ∞ ==  {f:ℕ ⟶ 𝔹| ∀n:ℕ((↑(f (n 1)))  (↑(f n)))} 



Definitions occuring in Statement :  nat: assert: b bool: 𝔹 all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] add: m natural_number: $n
Definitions occuring in definition :  set: {x:A| B[x]}  function: x:A ⟶ B[x] bool: 𝔹 all: x:A. B[x] nat: implies:  Q add: m natural_number: $n assert: b apply: a
FDL editor aliases :  nat-inf

Latex:
\mBbbN{}\minfty{}  ==    \{f:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}|  \mforall{}n:\mBbbN{}.  ((\muparrow{}(f  (n  +  1)))  {}\mRightarrow{}  (\muparrow{}(f  n)))\} 



Date html generated: 2016_05_15-PM-01_46_44
Last ObjectModification: 2015_09_23-AM-07_37_07

Theory : basic


Home Index