Nuprl Definition : weak-continuity

weak-continuity(T;V) ==
  ∀F:(ℕ ⟶ T) ⟶ V. ∀f:ℕ ⟶ T.  (↓∃n:ℕ. ∀g:ℕ ⟶ T. ((∀i:ℕn. ((f i) (g i) ∈ T))  ((F f) (F g) ∈ V)))



Definitions occuring in Statement :  int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] squash: T implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions occuring in definition :  squash: T exists: x:A. B[x] function: x:A ⟶ B[x] nat: implies:  Q all: x:A. B[x] int_seg: {i..j-} natural_number: $n equal: t ∈ T apply: a
FDL editor aliases :  weak-continuity

Latex:
weak-continuity(T;V)  ==
    \mforall{}F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  V.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  T.    (\mdownarrow{}\mexists{}n:\mBbbN{}.  \mforall{}g:\mBbbN{}  {}\mrightarrow{}  T.  ((\mforall{}i:\mBbbN{}n.  ((f  i)  =  (g  i)))  {}\mRightarrow{}  ((F  f)  =  (F  g))))



Date html generated: 2016_05_15-PM-01_46_35
Last ObjectModification: 2015_09_23-AM-07_37_06

Theory : basic


Home Index