Nuprl Definition : complete

complete{i:l}(S) ==
  (∀n∈S.(∃y∈snd(n). |= dl-conj(fst(n))  y))
  ∨ (∃K:dl_KS
      ∃f:node ⟶ worlds(K). (∀n∈S.(∀phi∈fst(n).dl_forces(K;tt;phi;f n)) ∧ (∀phi∈snd(n).dl_forces(K;ff;phi;f n))))



Definitions occuring in Statement :  node: node dl_forces: dl_forces(K;pos;a;s) dl_KS: dl_KS worlds: worlds(k) dl-conj: dl-conj(L) dl-valid: |= phi dl-implies: x1  x l_exists: (∃x∈L. P[x]) l_all: (∀x∈L.P[x]) bfalse: ff btrue: tt pi1: fst(t) pi2: snd(t) exists: x:A. B[x] or: P ∨ Q and: P ∧ Q apply: a function: x:A ⟶ B[x]
Definitions occuring in definition :  or: P ∨ Q l_exists: (∃x∈L. P[x]) dl-valid: |= phi dl-implies: x1  x dl-conj: dl-conj(L) dl_KS: dl_KS exists: x:A. B[x] function: x:A ⟶ B[x] node: node worlds: worlds(k) and: P ∧ Q pi1: fst(t) btrue: tt l_all: (∀x∈L.P[x]) pi2: snd(t) dl_forces: dl_forces(K;pos;a;s) bfalse: ff apply: a
FDL editor aliases :  complete

Latex:
complete\{i:l\}(S)  ==
    (\mforall{}n\mmember{}S.(\mexists{}y\mmember{}snd(n).  |=  dl-conj(fst(n))  {}\mRightarrow{}  y))
    \mvee{}  (\mexists{}K:dl\_KS
            \mexists{}f:node  {}\mrightarrow{}  worlds(K)
              (\mforall{}n\mmember{}S.(\mforall{}phi\mmember{}fst(n).dl\_forces(K;tt;phi;f  n))  \mwedge{}  (\mforall{}phi\mmember{}snd(n).dl\_forces(K;ff;phi;f  n))))



Date html generated: 2019_10_16-AM-11_25_00
Last ObjectModification: 2019_05_06-PM-05_06_04

Theory : dynamic!logic


Home Index