Nuprl Definition : church-inductive
church-inductive{i:l}(x) ==  ∀[P:cNat ⟶ ℙ]. ((P cZ) 
⇒ (∀[y:cNat]. ((P y) 
⇒ (P (cS y)))) 
⇒ (P x))
Definitions occuring in Statement : 
church-succ: cS
, 
church-zero: cZ
, 
church-Nat: cNat
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions occuring in definition : 
function: x:A ⟶ B[x]
, 
prop: ℙ
, 
church-zero: cZ
, 
uall: ∀[x:A]. B[x]
, 
church-Nat: cNat
, 
implies: P 
⇒ Q
, 
church-succ: cS
, 
apply: f a
FDL editor aliases : 
church-inductive
Latex:
church-inductive\{i:l\}(x)  ==    \mforall{}[P:cNat  {}\mrightarrow{}  \mBbbP{}].  ((P  cZ)  {}\mRightarrow{}  (\mforall{}[y:cNat].  ((P  y)  {}\mRightarrow{}  (P  (cS  y))))  {}\mRightarrow{}  (P  x))
Date html generated:
2020_05_20-AM-08_05_28
Last ObjectModification:
2019_11_15-PM-10_34_00
Theory : general
Home
Index