Nuprl Definition : cyclic-map
cyclic-map(T) == {f:T →⟶ T| ∀x,y:T. ∃n:ℕ. ((f^n x) = y ∈ T)}
Definitions occuring in Statement :
injection: A →⟶ B
,
fun_exp: f^n
,
nat: ℕ
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
set: {x:A| B[x]}
,
apply: f a
,
equal: s = t ∈ T
Definitions occuring in definition :
set: {x:A| B[x]}
,
injection: A →⟶ B
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
nat: ℕ
,
equal: s = t ∈ T
,
apply: f a
,
fun_exp: f^n
FDL editor aliases :
cyclic-map
Latex:
cyclic-map(T) == \{f:T \mrightarrow{}{}\mrightarrow{} T| \mforall{}x,y:T. \mexists{}n:\mBbbN{}. ((f\^{}n x) = y)\}
Date html generated:
2016_05_15-PM-06_18_17
Last ObjectModification:
2015_09_23-AM-08_02_31
Theory : general
Home
Index