Nuprl Definition : lifted-rel
lifted-rel(R) ==  λx,y. ((↑isl(y)) ∧ ((↑isl(x)) 
⇒ (R outl(x) outl(y))))
Definitions occuring in Statement : 
outl: outl(x)
, 
assert: ↑b
, 
isl: isl(x)
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
lambda: λx.A[x]
Definitions occuring in definition : 
lambda: λx.A[x]
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
assert: ↑b
, 
isl: isl(x)
, 
apply: f a
, 
outl: outl(x)
FDL editor aliases : 
lifted-rel
Latex:
lifted-rel(R)  ==    \mlambda{}x,y.  ((\muparrow{}isl(y))  \mwedge{}  ((\muparrow{}isl(x))  {}\mRightarrow{}  (R  outl(x)  outl(y))))
Date html generated:
2016_05_15-PM-06_35_12
Last ObjectModification:
2015_09_23-AM-08_04_08
Theory : general
Home
Index