Nuprl Definition : nim-grp

nim-grp() ==  <ℕ, λx,y. (x =z y), λx,y. x ≤y, λx,y. nim-sum(x;y), 0, λx.x>



Definitions occuring in Statement :  nim-sum: nim-sum(x;y) nat: le_int: i ≤j eq_int: (i =z j) lambda: λx.A[x] pair: <a, b> natural_number: $n
Definitions occuring in definition :  nat: eq_int: (i =z j) le_int: i ≤j nim-sum: nim-sum(x;y) pair: <a, b> natural_number: $n lambda: λx.A[x]
FDL editor aliases :  nim-grp

Latex:
nim-grp()  ==    <\mBbbN{},  \mlambda{}x,y.  (x  =\msubz{}  y),  \mlambda{}x,y.  x  \mleq{}z  y,  \mlambda{}x,y.  nim-sum(x;y),  0,  \mlambda{}x.x>



Date html generated: 2018_05_21-PM-09_15_28
Last ObjectModification: 2018_02_12-PM-05_57_45

Theory : general


Home Index