Nuprl Definition : p-mu
p-mu(P;x) == case x of inl(n) => (↑(P n)) ∧ (∀i:ℕn. (¬↑(P i))) | inr(z) => ∀i:ℕ. (¬↑(P i))
Definitions occuring in Statement :
int_seg: {i..j-}
,
nat: ℕ
,
assert: ↑b
,
all: ∀x:A. B[x]
,
not: ¬A
,
and: P ∧ Q
,
apply: f a
,
decide: case b of inl(x) => s[x] | inr(y) => t[y]
,
natural_number: $n
Definitions occuring in definition :
decide: case b of inl(x) => s[x] | inr(y) => t[y]
,
and: P ∧ Q
,
int_seg: {i..j-}
,
natural_number: $n
,
all: ∀x:A. B[x]
,
nat: ℕ
,
not: ¬A
,
assert: ↑b
,
apply: f a
FDL editor aliases :
p-mu
Latex:
p-mu(P;x) == case x of inl(n) => (\muparrow{}(P n)) \mwedge{} (\mforall{}i:\mBbbN{}n. (\mneg{}\muparrow{}(P i))) | inr(z) => \mforall{}i:\mBbbN{}. (\mneg{}\muparrow{}(P i))
Date html generated:
2016_05_15-PM-03_32_39
Last ObjectModification:
2015_09_23-AM-07_44_04
Theory : general
Home
Index