Nuprl Definition : star-append
star-append(T;P;Q) ==  λL.∃LL:T List List. ∃L':T List. ((∀X∈LL.P X) ∧ (Q L') ∧ (L = (concat(LL) @ L') ∈ (T List)))
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x]), 
concat: concat(ll), 
append: as @ bs, 
list: T List, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
apply: f a, 
lambda: λx.A[x], 
equal: s = t ∈ T
Definitions occuring in definition : 
lambda: λx.A[x], 
exists: ∃x:A. B[x], 
l_all: (∀x∈L.P[x]), 
and: P ∧ Q, 
apply: f a, 
equal: s = t ∈ T, 
list: T List, 
append: as @ bs, 
concat: concat(ll)
FDL editor aliases : 
star-append
Latex:
star-append(T;P;Q)  ==
    \mlambda{}L.\mexists{}LL:T  List  List.  \mexists{}L':T  List.  ((\mforall{}X\mmember{}LL.P  X)  \mwedge{}  (Q  L')  \mwedge{}  (L  =  (concat(LL)  @  L')))
Date html generated:
2016_05_15-PM-04_27_03
Last ObjectModification:
2015_09_23-AM-07_48_37
Theory : general
Home
Index