Nuprl Definition : bounded-lattice-axioms

bounded-lattice-axioms(l) ==  (∀[a:Point(l)]. (a ∨ a ∈ Point(l))) ∧ (∀[a:Point(l)]. (a ∧ a ∈ Point(l)))



Definitions occuring in Statement :  lattice-0: 0 lattice-1: 1 lattice-join: a ∨ b lattice-meet: a ∧ b lattice-point: Point(l) uall: [x:A]. B[x] and: P ∧ Q equal: t ∈ T
Definitions occuring in definition :  and: P ∧ Q lattice-join: a ∨ b lattice-0: 0 uall: [x:A]. B[x] equal: t ∈ T lattice-point: Point(l) lattice-meet: a ∧ b lattice-1: 1
FDL editor aliases :  bounded-lattice-axioms

Latex:
bounded-lattice-axioms(l)  ==    (\mforall{}[a:Point(l)].  (a  \mvee{}  0  =  a))  \mwedge{}  (\mforall{}[a:Point(l)].  (a  \mwedge{}  1  =  a))



Date html generated: 2020_05_20-AM-08_24_12
Last ObjectModification: 2015_10_06-PM-01_45_42

Theory : lattices


Home Index