Nuprl Definition : bounded-lattice-axioms
bounded-lattice-axioms(l) ==  (∀[a:Point(l)]. (a ∨ 0 = a ∈ Point(l))) ∧ (∀[a:Point(l)]. (a ∧ 1 = a ∈ Point(l)))
Definitions occuring in Statement : 
lattice-0: 0
, 
lattice-1: 1
, 
lattice-join: a ∨ b
, 
lattice-meet: a ∧ b
, 
lattice-point: Point(l)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions occuring in definition : 
and: P ∧ Q
, 
lattice-join: a ∨ b
, 
lattice-0: 0
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
, 
lattice-point: Point(l)
, 
lattice-meet: a ∧ b
, 
lattice-1: 1
FDL editor aliases : 
bounded-lattice-axioms
Latex:
bounded-lattice-axioms(l)  ==    (\mforall{}[a:Point(l)].  (a  \mvee{}  0  =  a))  \mwedge{}  (\mforall{}[a:Point(l)].  (a  \mwedge{}  1  =  a))
Date html generated:
2020_05_20-AM-08_24_12
Last ObjectModification:
2015_10_06-PM-01_45_42
Theory : lattices
Home
Index