Nuprl Definition : flattice-order

flattice-order(X;as;bs) ==  (∀b∈bs.(∃x∈b. (∃y∈b. flip-union(x) ∈ (X X))) ∨ (∃a∈as. a ⊆ b))



Definitions occuring in Statement :  flip-union: flip-union(x) l_contains: A ⊆ B l_exists: (∃x∈L. P[x]) l_all: (∀x∈L.P[x]) or: P ∨ Q union: left right equal: t ∈ T
Definitions occuring in definition :  l_all: (∀x∈L.P[x]) or: P ∨ Q equal: t ∈ T flip-union: flip-union(x) l_exists: (∃x∈L. P[x]) l_contains: A ⊆ B union: left right
FDL editor aliases :  flattice-order

Latex:
flattice-order(X;as;bs)  ==    (\mforall{}b\mmember{}bs.(\mexists{}x\mmember{}b.  (\mexists{}y\mmember{}b.  y  =  flip-union(x)))  \mvee{}  (\mexists{}a\mmember{}as.  a  \msubseteq{}  b))



Date html generated: 2020_05_20-AM-08_59_11
Last ObjectModification: 2017_01_24-AM-10_47_07

Theory : lattices


Home Index