Nuprl Definition : flattice-order
flattice-order(X;as;bs) ==  (∀b∈bs.(∃x∈b. (∃y∈b. y = flip-union(x) ∈ (X + X))) ∨ (∃a∈as. a ⊆ b))
Definitions occuring in Statement : 
flip-union: flip-union(x)
, 
l_contains: A ⊆ B
, 
l_exists: (∃x∈L. P[x])
, 
l_all: (∀x∈L.P[x])
, 
or: P ∨ Q
, 
union: left + right
, 
equal: s = t ∈ T
Definitions occuring in definition : 
l_all: (∀x∈L.P[x])
, 
or: P ∨ Q
, 
equal: s = t ∈ T
, 
flip-union: flip-union(x)
, 
l_exists: (∃x∈L. P[x])
, 
l_contains: A ⊆ B
, 
union: left + right
FDL editor aliases : 
flattice-order
Latex:
flattice-order(X;as;bs)  ==    (\mforall{}b\mmember{}bs.(\mexists{}x\mmember{}b.  (\mexists{}y\mmember{}b.  y  =  flip-union(x)))  \mvee{}  (\mexists{}a\mmember{}as.  a  \msubseteq{}  b))
Date html generated:
2020_05_20-AM-08_59_11
Last ObjectModification:
2017_01_24-AM-10_47_07
Theory : lattices
Home
Index