Nuprl Definition : free-dist-lattice
free-dist-lattice(T; eq) ==
  {points={ac:fset(fset(T))| ↑fset-antichain(eq;ac)}
   meet=λac1,ac2. fset-ac-glb(eq;ac1;ac2);
   join=λac1,ac2. fset-ac-lub(eq;ac1;ac2);
   0={};
   1={{}}}
Definitions occuring in Statement : 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
fset-ac-glb: fset-ac-glb(eq;ac1;ac2)
, 
fset-ac-lub: fset-ac-lub(eq;ac1;ac2)
, 
fset-antichain: fset-antichain(eq;ac)
, 
empty-fset: {}
, 
fset-singleton: {x}
, 
fset: fset(T)
, 
assert: ↑b
, 
set: {x:A| B[x]} 
, 
lambda: λx.A[x]
Definitions occuring in definition : 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
set: {x:A| B[x]} 
, 
fset: fset(T)
, 
assert: ↑b
, 
fset-antichain: fset-antichain(eq;ac)
, 
fset-ac-glb: fset-ac-glb(eq;ac1;ac2)
, 
lambda: λx.A[x]
, 
fset-ac-lub: fset-ac-lub(eq;ac1;ac2)
, 
fset-singleton: {x}
, 
empty-fset: {}
Latex:
free-dist-lattice(T;  eq)  ==
    \{points=\{ac:fset(fset(T))|  \muparrow{}fset-antichain(eq;ac)\}  ;
      meet=\mlambda{}ac1,ac2.  fset-ac-glb(eq;ac1;ac2);
      join=\mlambda{}ac1,ac2.  fset-ac-lub(eq;ac1;ac2);
      0=\{\};
      1=\{\{\}\}\}
Date html generated:
2020_05_20-AM-08_44_53
Last ObjectModification:
2015_10_06-PM-01_43_56
Theory : lattices
Home
Index