Nuprl Definition : lattice-hom

Hom(l1;l2) ==
  {f:Point(l1) ⟶ Point(l2)| 
   ∀[a,b:Point(l1)].  ((f a ∧ (f a ∧ b) ∈ Point(l2)) ∧ (f a ∨ (f a ∨ b) ∈ Point(l2)))} 



Definitions occuring in Statement :  lattice-join: a ∨ b lattice-meet: a ∧ b lattice-point: Point(l) uall: [x:A]. B[x] and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] equal: t ∈ T
Definitions occuring in definition :  set: {x:A| B[x]}  function: x:A ⟶ B[x] uall: [x:A]. B[x] and: P ∧ Q lattice-meet: a ∧ b equal: t ∈ T lattice-point: Point(l) apply: a lattice-join: a ∨ b
FDL editor aliases :  lattice-hom

Latex:
Hom(l1;l2)  ==
    \{f:Point(l1)  {}\mrightarrow{}  Point(l2)| 
      \mforall{}[a,b:Point(l1)].    ((f  a  \mwedge{}  f  b  =  (f  a  \mwedge{}  b))  \mwedge{}  (f  a  \mvee{}  f  b  =  (f  a  \mvee{}  b)))\} 



Date html generated: 2020_05_20-AM-08_23_47
Last ObjectModification: 2015_10_06-PM-01_45_56

Theory : lattices


Home Index