Nuprl Definition : agree_on

agree_on(T;x.P[x]) ==  λL1,L2. ((||L1|| ||L2|| ∈ ℤc∧ (∀i:ℕ||L1||. ((P[L1[i]] ∨ P[L2[i]])  (L1[i] L2[i] ∈ T))))



Definitions occuring in Statement :  select: L[n] length: ||as|| int_seg: {i..j-} cand: c∧ B all: x:A. B[x] implies:  Q or: P ∨ Q lambda: λx.A[x] natural_number: $n int: equal: t ∈ T
Definitions occuring in definition :  lambda: λx.A[x] cand: c∧ B int: all: x:A. B[x] int_seg: {i..j-} natural_number: $n length: ||as|| implies:  Q or: P ∨ Q equal: t ∈ T select: L[n]
FDL editor aliases :  agree_on

Latex:
agree\_on(T;x.P[x])  ==
    \mlambda{}L1,L2.  ((||L1||  =  ||L2||)  c\mwedge{}  (\mforall{}i:\mBbbN{}||L1||.  ((P[L1[i]]  \mvee{}  P[L2[i]])  {}\mRightarrow{}  (L1[i]  =  L2[i]))))



Date html generated: 2016_05_15-PM-02_05_54
Last ObjectModification: 2015_09_23-AM-07_37_54

Theory : list!


Home Index