Nuprl Definition : causal_order
causal_order(L;R;P;Q) == ∀i:ℕ||L||. ((Q i)
⇒ (∃j:ℕ||L||. (((j ≤ i) ∧ (P j)) ∧ (R j i))))
Definitions occuring in Statement :
length: ||as||
,
int_seg: {i..j-}
,
le: A ≤ B
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
apply: f a
,
natural_number: $n
Definitions occuring in definition :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
exists: ∃x:A. B[x]
,
int_seg: {i..j-}
,
natural_number: $n
,
length: ||as||
,
and: P ∧ Q
,
le: A ≤ B
,
apply: f a
FDL editor aliases :
causal_order
Latex:
causal\_order(L;R;P;Q) == \mforall{}i:\mBbbN{}||L||. ((Q i) {}\mRightarrow{} (\mexists{}j:\mBbbN{}||L||. (((j \mleq{} i) \mwedge{} (P j)) \mwedge{} (R j i))))
Date html generated:
2016_05_15-PM-02_03_23
Last ObjectModification:
2015_09_23-AM-07_37_39
Theory : list!
Home
Index