Nuprl Definition : causal_order

causal_order(L;R;P;Q) ==  ∀i:ℕ||L||. ((Q i)  (∃j:ℕ||L||. (((j ≤ i) ∧ (P j)) ∧ (R i))))



Definitions occuring in Statement :  length: ||as|| int_seg: {i..j-} le: A ≤ B all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q apply: a natural_number: $n
Definitions occuring in definition :  all: x:A. B[x] implies:  Q exists: x:A. B[x] int_seg: {i..j-} natural_number: $n length: ||as|| and: P ∧ Q le: A ≤ B apply: a
FDL editor aliases :  causal_order

Latex:
causal\_order(L;R;P;Q)  ==    \mforall{}i:\mBbbN{}||L||.  ((Q  i)  {}\mRightarrow{}  (\mexists{}j:\mBbbN{}||L||.  (((j  \mleq{}  i)  \mwedge{}  (P  j))  \mwedge{}  (R  j  i))))



Date html generated: 2016_05_15-PM-02_03_23
Last ObjectModification: 2015_09_23-AM-07_37_39

Theory : list!


Home Index