Nuprl Definition : disjoint_sublists

disjoint_sublists(T;L1;L2;L) ==
  ∃f1:ℕ||L1|| ⟶ ℕ||L||
   ∃f2:ℕ||L2|| ⟶ ℕ||L||
    ((increasing(f1;||L1||) ∧ (∀j:ℕ||L1||. (L1[j] L[f1 j] ∈ T)))
    ∧ (increasing(f2;||L2||) ∧ (∀j:ℕ||L2||. (L2[j] L[f2 j] ∈ T)))
    ∧ (∀j1:ℕ||L1||. ∀j2:ℕ||L2||.  ((f1 j1) (f2 j2) ∈ ℤ))))



Definitions occuring in Statement :  select: L[n] length: ||as|| increasing: increasing(f;k) int_seg: {i..j-} all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions occuring in definition :  exists: x:A. B[x] function: x:A ⟶ B[x] and: P ∧ Q increasing: increasing(f;k) select: L[n] all: x:A. B[x] int_seg: {i..j-} natural_number: $n length: ||as|| not: ¬A equal: t ∈ T int: apply: a
FDL editor aliases :  disjoint_sublists

Latex:
disjoint\_sublists(T;L1;L2;L)  ==
    \mexists{}f1:\mBbbN{}||L1||  {}\mrightarrow{}  \mBbbN{}||L||
      \mexists{}f2:\mBbbN{}||L2||  {}\mrightarrow{}  \mBbbN{}||L||
        ((increasing(f1;||L1||)  \mwedge{}  (\mforall{}j:\mBbbN{}||L1||.  (L1[j]  =  L[f1  j])))
        \mwedge{}  (increasing(f2;||L2||)  \mwedge{}  (\mforall{}j:\mBbbN{}||L2||.  (L2[j]  =  L[f2  j])))
        \mwedge{}  (\mforall{}j1:\mBbbN{}||L1||.  \mforall{}j2:\mBbbN{}||L2||.    (\mneg{}((f1  j1)  =  (f2  j2)))))



Date html generated: 2016_05_15-PM-01_57_42
Last ObjectModification: 2015_09_23-AM-07_37_34

Theory : list!


Home Index