Nuprl Definition : A-shift-spec

A-shift-spec(AType; Val; n; prog) ==
  ∀A:Arr(AType). ∀i:ℕn.
    ((i <  (A-post-val(AType;prog;A;i) A-pre-val(AType;A;i 1) ∈ Val))
    ∧ (A-post-val(AType;prog;A;n 1) A-pre-val(AType;A;0) ∈ Val))



Definitions occuring in Statement :  A-post-val: A-post-val(AType;prog;A;i) Arr: Arr(AType) A-pre-val: A-pre-val(AType;A;i) int_seg: {i..j-} less_than: a < b all: x:A. B[x] implies:  Q and: P ∧ Q subtract: m add: m natural_number: $n equal: t ∈ T
Definitions occuring in definition :  Arr: Arr(AType) all: x:A. B[x] int_seg: {i..j-} and: P ∧ Q implies:  Q less_than: a < b add: m equal: t ∈ T A-post-val: A-post-val(AType;prog;A;i) subtract: m A-pre-val: A-pre-val(AType;A;i) natural_number: $n

Latex:
A-shift-spec(AType;  Val;  n;  prog)  ==
    \mforall{}A:Arr(AType).  \mforall{}i:\mBbbN{}n.
        ((i  <  n  -  2  {}\mRightarrow{}  (A-post-val(AType;prog;A;i)  =  A-pre-val(AType;A;i  +  1)))
        \mwedge{}  (A-post-val(AType;prog;A;n  -  1)  =  A-pre-val(AType;A;0)))



Date html generated: 2016_05_15-PM-02_21_06
Last ObjectModification: 2015_09_23-AM-07_38_52

Theory : monads


Home Index