Nuprl Definition : provisional-type

Provisional(T) ==  x,y:ok:ℙ × supposing ↓ok//((↓fst(x) ⇐⇒ ↓fst(y)) ∧ ((↓fst(x))  ((snd(x)) (snd(y)) ∈ T)))



Definitions occuring in Statement :  quotient: x,y:A//B[x; y] uimplies: supposing a prop: pi1: fst(t) pi2: snd(t) iff: ⇐⇒ Q squash: T implies:  Q and: P ∧ Q product: x:A × B[x] equal: t ∈ T
Definitions occuring in definition :  quotient: x,y:A//B[x; y] product: x:A × B[x] prop: uimplies: supposing a and: P ∧ Q iff: ⇐⇒ Q implies:  Q squash: T pi1: fst(t) equal: t ∈ T pi2: snd(t)
FDL editor aliases :  prov-type prov-type prov-type

Latex:
Provisional(T)  ==
    x,y:ok:\mBbbP{}  \mtimes{}  T  supposing  \mdownarrow{}ok//((\mdownarrow{}fst(x)  \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}fst(y))  \mwedge{}  ((\mdownarrow{}fst(x))  {}\mRightarrow{}  ((snd(x))  =  (snd(y)))))



Date html generated: 2020_05_20-AM-08_00_37
Last ObjectModification: 2020_05_17-PM-06_47_01

Theory : monads


Home Index