Nuprl Definition : q-sat-constraints

q-sat-constraints(k;A;y) ==
  (||y|| k ∈ ℤ)
  c∧ (∀a∈A.let F,r,G in 
        if (r =z 0) then q-linear(k;j.F[j]?0;y) q-linear(k;j.G[j]?0;y) ∈ ℚ
        if (r =z 1) then q-linear(k;j.F[j]?0;y) ≤ q-linear(k;j.G[j]?0;y)
        else q-linear(k;j.F[j]?0;y) < q-linear(k;j.G[j]?0;y)
        fi )



Definitions occuring in Statement :  select?: as[i]?a q-linear: q-linear(k;i.X[i];y) qle: r ≤ s qless: r < s rationals: l_all: (∀x∈L.P[x]) length: ||as|| ifthenelse: if then else fi  eq_int: (i =z j) spreadn: spread3 cand: c∧ B natural_number: $n int: equal: t ∈ T
Definitions occuring in definition :  cand: c∧ B int: length: ||as|| l_all: (∀x∈L.P[x]) spreadn: spread3 equal: t ∈ T rationals: ifthenelse: if then else fi  eq_int: (i =z j) qle: r ≤ s qless: r < s q-linear: q-linear(k;i.X[i];y) select?: as[i]?a natural_number: $n
FDL editor aliases :  q-sat-constraints

Latex:
q-sat-constraints(k;A;y)  ==
    (||y||  =  k)
    c\mwedge{}  (\mforall{}a\mmember{}A.let  F,r,G  =  a  in 
                if  (r  =\msubz{}  0)  then  q-linear(k;j.F[j]?0;y)  =  q-linear(k;j.G[j]?0;y)
                if  (r  =\msubz{}  1)  then  q-linear(k;j.F[j]?0;y)  \mleq{}  q-linear(k;j.G[j]?0;y)
                else  q-linear(k;j.F[j]?0;y)  <  q-linear(k;j.G[j]?0;y)
                fi  )



Date html generated: 2016_05_15-PM-11_31_21
Last ObjectModification: 2015_09_23-AM-08_29_57

Theory : rationals


Home Index