Nuprl Definition : qlog-type

qlog-type(q;e) ==  {n:ℕ+((e ≤ 1)  (e ≤ q ↑ 1)) ∧ q ↑ n < e} 



Definitions occuring in Statement :  qexp: r ↑ n qle: r ≤ s qless: r < s nat_plus: + implies:  Q and: P ∧ Q set: {x:A| B[x]}  subtract: m natural_number: $n
Definitions occuring in definition :  set: {x:A| B[x]}  nat_plus: + and: P ∧ Q implies:  Q qle: r ≤ s subtract: m natural_number: $n qless: r < s qexp: r ↑ n
FDL editor aliases :  qlog-type

Latex:
qlog-type(q;e)  ==    \{n:\mBbbN{}\msupplus{}|  ((e  \mleq{}  1)  {}\mRightarrow{}  (e  \mleq{}  q  \muparrow{}  n  -  1))  \mwedge{}  q  \muparrow{}  n  <  e\} 



Date html generated: 2016_05_15-PM-11_15_22
Last ObjectModification: 2015_09_23-AM-08_28_06

Theory : rationals


Home Index