Nuprl Definition : qv-constrained-no-sup

qv-constrained-no-sup(n;S;lfs) ==
  (∃p:ℚ^n. qv-constrained(S;p))
  ∧ (∀p:ℚ^n. (qv-constrained(S;p)  (∃q:ℚ^n. (qv-constrained(S;q) ∧ qlfs-min-val(lfs;p) < qlfs-min-val(lfs;q)))))



Definitions occuring in Statement :  qlfs-min-val: qlfs-min-val(lfs;p) qv-constrained: qv-constrained(S;p) qvn: ^n qless: r < s all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions occuring in definition :  all: x:A. B[x] implies:  Q exists: x:A. B[x] qvn: ^n and: P ∧ Q qv-constrained: qv-constrained(S;p) qless: r < s qlfs-min-val: qlfs-min-val(lfs;p)
FDL editor aliases :  qv-constrained-no-sup

Latex:
qv-constrained-no-sup(n;S;lfs)  ==
    (\mexists{}p:\mBbbQ{}\^{}n.  qv-constrained(S;p))
    \mwedge{}  (\mforall{}p:\mBbbQ{}\^{}n
              (qv-constrained(S;p)
              {}\mRightarrow{}  (\mexists{}q:\mBbbQ{}\^{}n.  (qv-constrained(S;q)  \mwedge{}  qlfs-min-val(lfs;p)  <  qlfs-min-val(lfs;q)))))



Date html generated: 2016_05_15-PM-11_23_05
Last ObjectModification: 2015_09_23-AM-08_29_25

Theory : rationals


Home Index