Nuprl Definition : qv-constrained-no-sup
qv-constrained-no-sup(n;S;lfs) ==
  (∃p:ℚ^n. qv-constrained(S;p))
  ∧ (∀p:ℚ^n. (qv-constrained(S;p) 
⇒ (∃q:ℚ^n. (qv-constrained(S;q) ∧ qlfs-min-val(lfs;p) < qlfs-min-val(lfs;q)))))
Definitions occuring in Statement : 
qlfs-min-val: qlfs-min-val(lfs;p)
, 
qv-constrained: qv-constrained(S;p)
, 
qvn: ℚ^n
, 
qless: r < s
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions occuring in definition : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
qvn: ℚ^n
, 
and: P ∧ Q
, 
qv-constrained: qv-constrained(S;p)
, 
qless: r < s
, 
qlfs-min-val: qlfs-min-val(lfs;p)
FDL editor aliases : 
qv-constrained-no-sup
Latex:
qv-constrained-no-sup(n;S;lfs)  ==
    (\mexists{}p:\mBbbQ{}\^{}n.  qv-constrained(S;p))
    \mwedge{}  (\mforall{}p:\mBbbQ{}\^{}n
              (qv-constrained(S;p)
              {}\mRightarrow{}  (\mexists{}q:\mBbbQ{}\^{}n.  (qv-constrained(S;q)  \mwedge{}  qlfs-min-val(lfs;p)  <  qlfs-min-val(lfs;q)))))
Date html generated:
2016_05_15-PM-11_23_05
Last ObjectModification:
2015_09_23-AM-08_29_25
Theory : rationals
Home
Index