Nuprl Definition : qv-constrained-sup
qv-constrained-sup(n;S;lfs;p;r) ==
  qv-constrained(S;p)
  ∧ (qlfs-min-val(lfs;p) = r ∈ ℚ)
  ∧ (∀q:ℚ^n. (qv-constrained(S;q) 
⇒ (qlfs-min-val(lfs;q) ≤ qlfs-min-val(lfs;p))))
Definitions occuring in Statement : 
qlfs-min-val: qlfs-min-val(lfs;p)
, 
qv-constrained: qv-constrained(S;p)
, 
qvn: ℚ^n
, 
qle: r ≤ s
, 
rationals: ℚ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
equal: s = t ∈ T
Definitions occuring in definition : 
and: P ∧ Q
, 
equal: s = t ∈ T
, 
rationals: ℚ
, 
all: ∀x:A. B[x]
, 
qvn: ℚ^n
, 
implies: P 
⇒ Q
, 
qv-constrained: qv-constrained(S;p)
, 
qle: r ≤ s
, 
qlfs-min-val: qlfs-min-val(lfs;p)
FDL editor aliases : 
qv-constrained-sup
Latex:
qv-constrained-sup(n;S;lfs;p;r)  ==
    qv-constrained(S;p)
    \mwedge{}  (qlfs-min-val(lfs;p)  =  r)
    \mwedge{}  (\mforall{}q:\mBbbQ{}\^{}n.  (qv-constrained(S;q)  {}\mRightarrow{}  (qlfs-min-val(lfs;q)  \mleq{}  qlfs-min-val(lfs;p))))
Date html generated:
2016_05_15-PM-11_23_25
Last ObjectModification:
2015_09_23-AM-08_29_35
Theory : rationals
Home
Index