Nuprl Definition : qv-convex

qv-convex(p.S[p]) ==
  ∀p,q:ℚ List.
    ((dimension(p) dimension(q) ∈ ℤ)
     S[p]
     S[q]
     (∀t:ℚ((0 ≤ t)  (t ≤ 1)  S[qv-add(qv-mul(t;p);qv-mul(1 t;q))])))



Definitions occuring in Statement :  qv-mul: qv-mul(r;bs) qv-add: qv-add(as;bs) qv-dim: dimension(as) qle: r ≤ s qsub: s rationals: list: List all: x:A. B[x] implies:  Q natural_number: $n int: equal: t ∈ T
Definitions occuring in definition :  list: List equal: t ∈ T int: qv-dim: dimension(as) all: x:A. B[x] rationals: implies:  Q qle: r ≤ s qv-add: qv-add(as;bs) qv-mul: qv-mul(r;bs) qsub: s natural_number: $n
FDL editor aliases :  qv-convex

Latex:
qv-convex(p.S[p])  ==
    \mforall{}p,q:\mBbbQ{}  List.
        ((dimension(p)  =  dimension(q))
        {}\mRightarrow{}  S[p]
        {}\mRightarrow{}  S[q]
        {}\mRightarrow{}  (\mforall{}t:\mBbbQ{}.  ((0  \mleq{}  t)  {}\mRightarrow{}  (t  \mleq{}  1)  {}\mRightarrow{}  S[qv-add(qv-mul(t;p);qv-mul(1  -  t;q))])))



Date html generated: 2016_05_15-PM-11_21_10
Last ObjectModification: 2015_09_23-AM-08_28_48

Theory : rationals


Home Index