Nuprl Definition : rational-cube-complex

n-dim-complex ==  {L:ℚCube(k) List| no_repeats(ℚCube(k);L) ∧ (∀c,d∈L.  Compatible(c;d)) ∧ (∀c∈L.dim(c) n ∈ ℤ)} 



Definitions occuring in Statement :  compatible-rat-cubes: Compatible(c;d) rat-cube-dimension: dim(c) rational-cube: Cube(k) pairwise: (∀x,y∈L.  P[x; y]) l_all: (∀x∈L.P[x]) no_repeats: no_repeats(T;l) list: List and: P ∧ Q set: {x:A| B[x]}  int: equal: t ∈ T
Definitions occuring in definition :  rat-cube-dimension: dim(c) int: equal: t ∈ T l_all: (∀x∈L.P[x]) compatible-rat-cubes: Compatible(c;d) pairwise: (∀x,y∈L.  P[x; y]) and: P ∧ Q rational-cube: Cube(k) no_repeats: no_repeats(T;l) list: List set: {x:A| B[x]} 
FDL editor aliases :  rc-complex rc-complex rc-complex

Latex:
n-dim-complex  ==
    \{L:\mBbbQ{}Cube(k)  List|  no\_repeats(\mBbbQ{}Cube(k);L)  \mwedge{}  (\mforall{}c,d\mmember{}L.    Compatible(c;d))  \mwedge{}  (\mforall{}c\mmember{}L.dim(c)  =  n)\} 



Date html generated: 2019_10_29-AM-07_55_29
Last ObjectModification: 2019_10_17-PM-04_47_49

Theory : rationals


Home Index