Nuprl Definition : bs_tree_ordered

bs_tree_ordered(E;cmp;tr) ==
  case(tr)
  null=>True
  leaf(v)=>True
  node(a,v,b)=>oa,ob.oa
  ∧ ob
  ∧ (∀x:E. (member_bs_tree(E;x;a)  0 < cmp v))
  ∧ (∀x:E. (member_bs_tree(E;x;b)  0 < cmp x))



Definitions occuring in Statement :  member_bs_tree: member_bs_tree(E;x;tr) bs_tree_ind: bs_tree_ind less_than: a < b all: x:A. B[x] implies:  Q and: P ∧ Q true: True apply: a natural_number: $n
Definitions occuring in definition :  bs_tree_ind: bs_tree_ind true: True and: P ∧ Q all: x:A. B[x] implies:  Q member_bs_tree: member_bs_tree(E;x;tr) less_than: a < b natural_number: $n apply: a
FDL editor aliases :  bs_tree_ordered

Latex:
bs\_tree\_ordered(E;cmp;tr)  ==
    case(tr)
    null=>True
    leaf(v)=>True
    node(a,v,b)=>oa,ob.oa
    \mwedge{}  ob
    \mwedge{}  (\mforall{}x:E.  (member\_bs\_tree(E;x;a)  {}\mRightarrow{}  0  <  cmp  x  v))
    \mwedge{}  (\mforall{}x:E.  (member\_bs\_tree(E;x;b)  {}\mRightarrow{}  0  <  cmp  v  x))



Date html generated: 2016_05_15-PM-01_51_07
Last ObjectModification: 2016_04_07-PM-07_02_57

Theory : tree_1


Home Index