Nuprl Rule : equalityEqualityBase

This rule proved as lemma rule_equality_equality_base_or_true in file rules/rules_equality.v
 at https://github.com/vrahli/NuprlInCoq  

H  ⊢ (a11 a12 ∈ A1) (a21 a22 ∈ A2) ∈ Type

  BY equalityEqualityBase ()
  
  H  ⊢ A1 A2 ∈ Type
  H  ⊢ a11 a21 ∈ Image((x:ℤ + ℤ × case of inl() => A1 inr() => Base),(λp.(snd(p))))
  H  ⊢ a12 a22 ∈ Image((x:ℤ + ℤ × case of inl() => A1 inr() => Base),(λp.(snd(p))))



Definitions occuring in rule :  universe: Type equal: t ∈ T image-type: Image(T,f) product: x:A × B[x] union: left right int: decide: case of inl(x) => s[x] inr(y) => t[y] base: Base lambda: λx.A[x] pi2: snd(t) axiom: Ax

Latex:
H    \mvdash{}  (a11  =  a12)  =  (a21  =  a22)

    BY  equalityEqualityBase  x  p  ()
   
    H    \mvdash{}  A1  =  A2
    H    \mvdash{}  a11  =  a21
    H    \mvdash{}  a12  =  a22



Date html generated: 2017_09_29-PM-05_45_14
Last ObjectModification: 2017_02_24-PM-04_22_33

Theory : rules


Home Index