Nuprl Lemma : dist_1op_2op_lr_wf

[A:Type]. ∀[f:A ⟶ A]. ∀[x:A ⟶ A ⟶ A].  (Dist1op2opLR(A;f;x) ∈ ℙ)


Proof




Definitions occuring in Statement :  dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] infix_ap: y so_apply: x[s]
Lemmas referenced :  uall_wf and_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  A].  \mforall{}[x:A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].    (Dist1op2opLR(A;f;x)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-00_02_38
Last ObjectModification: 2015_12_26-PM-11_25_28

Theory : gen_algebra_1


Home Index