Nuprl Lemma : dist_1op_2op_lr_wf
∀[A:Type]. ∀[f:A ⟶ A]. ∀[x:A ⟶ A ⟶ A].  (Dist1op2opLR(A;f;x) ∈ ℙ)
Proof
Definitions occuring in Statement : 
dist_1op_2op_lr: Dist1op2opLR(A;1op;2op)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
dist_1op_2op_lr: Dist1op2opLR(A;1op;2op)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
infix_ap: x f y
, 
so_apply: x[s]
Lemmas referenced : 
uall_wf, 
and_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  A].  \mforall{}[x:A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].    (Dist1op2opLR(A;f;x)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-00_02_38
Last ObjectModification:
2015_12_26-PM-11_25_28
Theory : gen_algebra_1
Home
Index