Nuprl Lemma : monot_functionality
∀[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].
  ∀f:T ⟶ T. ((∀x,y:T.  (R[x;y] 
⇐⇒ R'[x;y])) 
⇒ (monot(T;x,y.R[x;y];f) 
⇐⇒ monot(T;x,y.R'[x;y];f)))
Proof
Definitions occuring in Statement : 
monot: monot(T;x,y.R[x; y];f)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
monot: monot(T;x,y.R[x; y];f)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
all_wf, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
hypothesis, 
functionEquality, 
cumulativity, 
universeEquality, 
independent_pairFormation, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
addLevel, 
productElimination, 
impliesFunctionality, 
allFunctionality, 
allLevelFunctionality, 
impliesLevelFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}f:T  {}\mrightarrow{}  T.  ((\mforall{}x,y:T.    (R[x;y]  \mLeftarrow{}{}\mRightarrow{}  R'[x;y]))  {}\mRightarrow{}  (monot(T;x,y.R[x;y];f)  \mLeftarrow{}{}\mRightarrow{}  monot(T;x,y.R'[x;y];f)))
Date html generated:
2016_05_15-PM-00_03_04
Last ObjectModification:
2015_12_26-PM-11_25_21
Theory : gen_algebra_1
Home
Index