Nuprl Lemma : monot_functionality

[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].
  ∀f:T ⟶ T. ((∀x,y:T.  (R[x;y] ⇐⇒ R'[x;y]))  (monot(T;x,y.R[x;y];f) ⇐⇒ monot(T;x,y.R'[x;y];f)))


Proof




Definitions occuring in Statement :  monot: monot(T;x,y.R[x; y];f) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  monot: monot(T;x,y.R[x; y];f) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q subtype_rel: A ⊆B
Lemmas referenced :  all_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis functionEquality cumulativity universeEquality independent_pairFormation dependent_functionElimination independent_functionElimination because_Cache addLevel productElimination impliesFunctionality allFunctionality allLevelFunctionality impliesLevelFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}f:T  {}\mrightarrow{}  T.  ((\mforall{}x,y:T.    (R[x;y]  \mLeftarrow{}{}\mRightarrow{}  R'[x;y]))  {}\mRightarrow{}  (monot(T;x,y.R[x;y];f)  \mLeftarrow{}{}\mRightarrow{}  monot(T;x,y.R'[x;y];f)))



Date html generated: 2016_05_15-PM-00_03_04
Last ObjectModification: 2015_12_26-PM-11_25_21

Theory : gen_algebra_1


Home Index