Nuprl Lemma : sq_stable__action_p

[A:Type]. ∀[x:A ⟶ A ⟶ A]. ∀[e:A]. ∀[S:Type]. ∀[f:A ⟶ S ⟶ S].  SqStable(IsAction(A;x;e;S;f))


Proof




Definitions occuring in Statement :  action_p: IsAction(A;x;e;S;f) sq_stable: SqStable(P) uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  action_p: IsAction(A;x;e;S;f) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] infix_ap: y so_apply: x[s] prop: implies:  Q all: x:A. B[x] sq_stable: SqStable(P) and: P ∧ Q
Lemmas referenced :  sq_stable__and uall_wf all_wf equal_wf sq_stable__uall sq_stable__all sq_stable__equal squash_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis isect_memberEquality independent_functionElimination because_Cache lambdaFormation dependent_functionElimination axiomEquality productElimination independent_pairEquality functionEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[x:A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].  \mforall{}[e:A].  \mforall{}[S:Type].  \mforall{}[f:A  {}\mrightarrow{}  S  {}\mrightarrow{}  S].    SqStable(IsAction(A;x;e;S;f))



Date html generated: 2016_05_15-PM-00_02_35
Last ObjectModification: 2015_12_26-PM-11_25_42

Theory : gen_algebra_1


Home Index