Nuprl Lemma : sq_stable__ident

[T:Type]. ∀[op:T ⟶ T ⟶ T]. ∀[id:T].  SqStable(Ident(T;op;id))


Proof




Definitions occuring in Statement :  ident: Ident(T;op;id) sq_stable: SqStable(P) uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  ident: Ident(T;op;id) uall: [x:A]. B[x] member: t ∈ T sq_stable: SqStable(P) implies:  Q and: P ∧ Q so_lambda: λ2x.t[x] infix_ap: y so_apply: x[s] prop:
Lemmas referenced :  squash_wf uall_wf and_wf equal_wf sq_stable__uall sq_stable__and sq_stable__equal
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality isect_memberEquality isectElimination productElimination independent_pairEquality axiomEquality hypothesis lemma_by_obid applyEquality because_Cache functionEquality universeEquality independent_functionElimination lambdaFormation

Latex:
\mforall{}[T:Type].  \mforall{}[op:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].  \mforall{}[id:T].    SqStable(Ident(T;op;id))



Date html generated: 2016_05_15-PM-00_02_16
Last ObjectModification: 2015_12_26-PM-11_25_39

Theory : gen_algebra_1


Home Index