Nuprl Lemma : xxconnex_functionality_wrt_breqv

[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].  ((R <≡>{T} R')  (connex(T;R) ⇐⇒ connex(T;R')))


Proof




Definitions occuring in Statement :  xxconnex: connex(T;R) binrel_eqv: E <≡>{T} E' uall: [x:A]. B[x] prop: iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q xxconnex: connex(T;R) connex: Connex(T;x,y.R[x; y]) all: x:A. B[x] member: t ∈ T or: P ∨ Q prop: guard: {T} rev_implies:  Q binrel_eqv: E <≡>{T} E'
Lemmas referenced :  xxconnex_wf binrel_eqv_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation sqequalHypSubstitution cut hypothesis dependent_functionElimination thin hypothesisEquality unionElimination inlFormation applyEquality sqequalRule inrFormation because_Cache lemma_by_obid isectElimination functionEquality cumulativity universeEquality productElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((R  <\mequiv{}>\{T\}  R')  {}\mRightarrow{}  (connex(T;R)  \mLeftarrow{}{}\mRightarrow{}  connex(T;R')))



Date html generated: 2016_05_15-PM-00_01_13
Last ObjectModification: 2015_12_26-PM-11_26_24

Theory : gen_algebra_1


Home Index