Nuprl Lemma : xxconnex_functionality_wrt_breqv
∀[T:Type]. ∀[R,R':T ⟶ T ⟶ ℙ].  ((R <≡>{T} R') 
⇒ (connex(T;R) 
⇐⇒ connex(T;R')))
Proof
Definitions occuring in Statement : 
xxconnex: connex(T;R)
, 
binrel_eqv: E <≡>{T} E'
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
xxconnex: connex(T;R)
, 
connex: Connex(T;x,y.R[x; y])
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
or: P ∨ Q
, 
prop: ℙ
, 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
binrel_eqv: E <≡>{T} E'
Lemmas referenced : 
xxconnex_wf, 
binrel_eqv_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
cut, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
unionElimination, 
inlFormation, 
applyEquality, 
sqequalRule, 
inrFormation, 
because_Cache, 
lemma_by_obid, 
isectElimination, 
functionEquality, 
cumulativity, 
universeEquality, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R,R':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((R  <\mequiv{}>\{T\}  R')  {}\mRightarrow{}  (connex(T;R)  \mLeftarrow{}{}\mRightarrow{}  connex(T;R')))
Date html generated:
2016_05_15-PM-00_01_13
Last ObjectModification:
2015_12_26-PM-11_26_24
Theory : gen_algebra_1
Home
Index