Step
*
of Lemma
xxconnex_iff_trichot_a
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. (connex(T;Ro)
⇐⇒ ∀a,b:T. ((R a b) ∨ (a = b ∈ T) ∨ (R b a)))
BY
{ ((Eval ``xxconnex refl_cl`` 0
THEN AGenRepD ["basic"]) THENA Auto) }
1
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. ∀x,y:T. (((x = y ∈ T) ∨ (R x y)) ∨ (y = x ∈ T) ∨ (R y x))@i
4. a : T@i
5. b : T@i
⊢ (R a b) ∨ (a = b ∈ T) ∨ (R b a)
2
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. ∀a,b:T. ((R a b) ∨ (a = b ∈ T) ∨ (R b a))@i
4. x : T@i
5. y : T@i
⊢ ((x = y ∈ T) ∨ (R x y)) ∨ (y = x ∈ T) ∨ (R y x)
Latex:
Latex:
\mforall{}[T:Type]. \mforall{}[R:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]. (connex(T;R\msupzero{}) \mLeftarrow{}{}\mRightarrow{} \mforall{}a,b:T. ((R a b) \mvee{} (a = b) \mvee{} (R b a)))
By
Latex:
((Eval ``xxconnex refl\_cl`` 0
THEN AGenRepD ["basic"]) THENA Auto)
Home
Index