Nuprl Lemma : imon_all_properties
∀[g:IMonoid]. (Assoc(|g|;*) ∧ Ident(|g|;*;e))
Proof
Definitions occuring in Statement : 
imon: IMonoid, 
grp_id: e, 
grp_op: *, 
grp_car: |g|, 
ident: Ident(T;op;id), 
assoc: Assoc(T;op), 
uall: ∀[x:A]. B[x], 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
imon: IMonoid, 
and: P ∧ Q, 
assoc: Assoc(T;op), 
ident: Ident(T;op;id), 
monoid_p: IsMonoid(T;op;id), 
cand: A c∧ B
Lemmas referenced : 
imon_properties, 
grp_car_wf, 
imon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
independent_pairFormation
Latex:
\mforall{}[g:IMonoid].  (Assoc(|g|;*)  \mwedge{}  Ident(|g|;*;e))
 Date html generated: 
2016_05_15-PM-00_06_40
 Last ObjectModification: 
2015_12_26-PM-11_47_16
Theory : groups_1
Home
Index