Nuprl Lemma : imon_properties
∀[g:IMonoid]. IsMonoid(|g|;*;e)
Proof
Definitions occuring in Statement : 
imon: IMonoid, 
grp_id: e, 
grp_op: *, 
grp_car: |g|, 
monoid_p: IsMonoid(T;op;id), 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
imon: IMonoid, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
squash: ↓T, 
monoid_p: IsMonoid(T;op;id), 
and: P ∧ Q, 
assoc: Assoc(T;op), 
ident: Ident(T;op;id)
Lemmas referenced : 
imon_wf, 
grp_id_wf, 
grp_op_wf, 
grp_car_wf, 
sq_stable__monoid_p
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[g:IMonoid].  IsMonoid(|g|;*;e)
Date html generated:
2016_05_15-PM-00_06_39
Last ObjectModification:
2016_01_15-PM-11_06_30
Theory : groups_1
Home
Index