Step
*
1
1
2
of Lemma
inj_into_ocmon
.....set predicate.....
1. g : GrpSig
2. h : OCMon
3. Assoc(|h|;*)
4. Ident(|h|;*;e)
5. Comm(|h|;*)
6. UniformlyRefl(|h|;x,y.↑(x ≤b y))
7. UniformlyTrans(|h|;x,y.↑(x ≤b y))
8. UniformlyAntiSym(|h|;x,y.↑(x ≤b y))
9. Connex(|h|;x,y.↑(x ≤b y))
10. Cancel(|h|;|h|;*)
11. ∀[z:|h|]. monot(|h|;x,y.↑(x ≤b y);λw.(z * w))
12. f : |g| ⟶ |h|
13. FunThru2op(|g|;|h|;*;*;f)
14. (f e) = e ∈ |h|
15. Inj(|g|;|h|;f)
16. RelsIso(|g|;|h|;x,y.↑(x =b y);x,y.↑(x =b y);f)
17. RelsIso(|g|;|h|;x,y.↑(x ≤b y);x,y.↑(x ≤b y);f)
⊢ (UniformLinorder(|g|;x,y.↑(x ≤b y)) ∧ (=b = (λx,y. ((x ≤b y) ∧b (y ≤b x))) ∈ (|g| ⟶ |g| ⟶ 𝔹)))
∧ Cancel(|g|;|g|;*)
∧ (∀[z:|g|]. monot(|g|;x,y.↑(x ≤b y);λw.(z * w)))
BY
{ Auto }
1
1. g : GrpSig
2. h : OCMon
3. Assoc(|h|;*)
4. Ident(|h|;*;e)
5. Comm(|h|;*)
6. UniformlyRefl(|h|;x,y.↑(x ≤b y))
7. UniformlyTrans(|h|;x,y.↑(x ≤b y))
8. UniformlyAntiSym(|h|;x,y.↑(x ≤b y))
9. Connex(|h|;x,y.↑(x ≤b y))
10. Cancel(|h|;|h|;*)
11. ∀[z:|h|]. monot(|h|;x,y.↑(x ≤b y);λw.(z * w))
12. f : |g| ⟶ |h|
13. FunThru2op(|g|;|h|;*;*;f)
14. (f e) = e ∈ |h|
15. Inj(|g|;|h|;f)
16. RelsIso(|g|;|h|;x,y.↑(x =b y);x,y.↑(x =b y);f)
17. RelsIso(|g|;|h|;x,y.↑(x ≤b y);x,y.↑(x ≤b y);f)
⊢ UniformLinorder(|g|;x,y.↑(x ≤b y))
2
1. g : GrpSig
2. h : OCMon
3. Assoc(|h|;*)
4. Ident(|h|;*;e)
5. Comm(|h|;*)
6. UniformlyRefl(|h|;x,y.↑(x ≤b y))
7. UniformlyTrans(|h|;x,y.↑(x ≤b y))
8. UniformlyAntiSym(|h|;x,y.↑(x ≤b y))
9. Connex(|h|;x,y.↑(x ≤b y))
10. Cancel(|h|;|h|;*)
11. ∀[z:|h|]. monot(|h|;x,y.↑(x ≤b y);λw.(z * w))
12. f : |g| ⟶ |h|
13. FunThru2op(|g|;|h|;*;*;f)
14. (f e) = e ∈ |h|
15. Inj(|g|;|h|;f)
16. RelsIso(|g|;|h|;x,y.↑(x =b y);x,y.↑(x =b y);f)
17. RelsIso(|g|;|h|;x,y.↑(x ≤b y);x,y.↑(x ≤b y);f)
18. UniformLinorder(|g|;x,y.↑(x ≤b y))
⊢ =b = (λx,y. ((x ≤b y) ∧b (y ≤b x))) ∈ (|g| ⟶ |g| ⟶ 𝔹)
3
1. g : GrpSig
2. h : OCMon
3. Assoc(|h|;*)
4. Ident(|h|;*;e)
5. Comm(|h|;*)
6. UniformlyRefl(|h|;x,y.↑(x ≤b y))
7. UniformlyTrans(|h|;x,y.↑(x ≤b y))
8. UniformlyAntiSym(|h|;x,y.↑(x ≤b y))
9. Connex(|h|;x,y.↑(x ≤b y))
10. Cancel(|h|;|h|;*)
11. ∀[z:|h|]. monot(|h|;x,y.↑(x ≤b y);λw.(z * w))
12. f : |g| ⟶ |h|
13. FunThru2op(|g|;|h|;*;*;f)
14. (f e) = e ∈ |h|
15. Inj(|g|;|h|;f)
16. RelsIso(|g|;|h|;x,y.↑(x =b y);x,y.↑(x =b y);f)
17. RelsIso(|g|;|h|;x,y.↑(x ≤b y);x,y.↑(x ≤b y);f)
18. UniformLinorder(|g|;x,y.↑(x ≤b y))
19. =b = (λx,y. ((x ≤b y) ∧b (y ≤b x))) ∈ (|g| ⟶ |g| ⟶ 𝔹)
⊢ Cancel(|g|;|g|;*)
4
1. g : GrpSig
2. h : OCMon
3. Assoc(|h|;*)
4. Ident(|h|;*;e)
5. Comm(|h|;*)
6. UniformlyRefl(|h|;x,y.↑(x ≤b y))
7. UniformlyTrans(|h|;x,y.↑(x ≤b y))
8. UniformlyAntiSym(|h|;x,y.↑(x ≤b y))
9. Connex(|h|;x,y.↑(x ≤b y))
10. Cancel(|h|;|h|;*)
11. ∀[z:|h|]. monot(|h|;x,y.↑(x ≤b y);λw.(z * w))
12. f : |g| ⟶ |h|
13. FunThru2op(|g|;|h|;*;*;f)
14. (f e) = e ∈ |h|
15. Inj(|g|;|h|;f)
16. RelsIso(|g|;|h|;x,y.↑(x =b y);x,y.↑(x =b y);f)
17. RelsIso(|g|;|h|;x,y.↑(x ≤b y);x,y.↑(x ≤b y);f)
18. UniformLinorder(|g|;x,y.↑(x ≤b y))
19. =b = (λx,y. ((x ≤b y) ∧b (y ≤b x))) ∈ (|g| ⟶ |g| ⟶ 𝔹)
20. Cancel(|g|;|g|;*)
21. z : |g|
⊢ monot(|g|;x,y.↑(x ≤b y);λw.(z * w))
Latex:
Latex:
.....set predicate.....
1. g : GrpSig
2. h : OCMon
3. Assoc(|h|;*)
4. Ident(|h|;*;e)
5. Comm(|h|;*)
6. UniformlyRefl(|h|;x,y.\muparrow{}(x \mleq{}\msubb{} y))
7. UniformlyTrans(|h|;x,y.\muparrow{}(x \mleq{}\msubb{} y))
8. UniformlyAntiSym(|h|;x,y.\muparrow{}(x \mleq{}\msubb{} y))
9. Connex(|h|;x,y.\muparrow{}(x \mleq{}\msubb{} y))
10. Cancel(|h|;|h|;*)
11. \mforall{}[z:|h|]. monot(|h|;x,y.\muparrow{}(x \mleq{}\msubb{} y);\mlambda{}w.(z * w))
12. f : |g| {}\mrightarrow{} |h|
13. FunThru2op(|g|;|h|;*;*;f)
14. (f e) = e
15. Inj(|g|;|h|;f)
16. RelsIso(|g|;|h|;x,y.\muparrow{}(x =\msubb{} y);x,y.\muparrow{}(x =\msubb{} y);f)
17. RelsIso(|g|;|h|;x,y.\muparrow{}(x \mleq{}\msubb{} y);x,y.\muparrow{}(x \mleq{}\msubb{} y);f)
\mvdash{} (UniformLinorder(|g|;x,y.\muparrow{}(x \mleq{}\msubb{} y)) \mwedge{} (=\msubb{} = (\mlambda{}x,y. ((x \mleq{}\msubb{} y) \mwedge{}\msubb{} (y \mleq{}\msubb{} x)))))
\mwedge{} Cancel(|g|;|g|;*)
\mwedge{} (\mforall{}[z:|g|]. monot(|g|;x,y.\muparrow{}(x \mleq{}\msubb{} y);\mlambda{}w.(z * w)))
By
Latex:
Auto
Home
Index