Nuprl Lemma : int_hgrp_el_wf

[n:ℕ]. (zhgrp(n) ∈ |(<ℤ+>↓hgrp)|)


Proof




Definitions occuring in Statement :  int_hgrp_el: zhgrp(n) int_add_grp: <ℤ+> hgrp_of_ocgrp: g↓hgrp grp_car: |g| nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  int_hgrp_el: zhgrp(n) uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  nat_subtype nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut hypothesisEquality applyEquality thin lemma_by_obid hypothesis sqequalHypSubstitution axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbN{}].  (zhgrp(n)  \mmember{}  |(<\mBbbZ{}+>\mdownarrow{}hgrp)|)



Date html generated: 2016_05_15-PM-00_19_27
Last ObjectModification: 2015_12_26-PM-11_37_29

Theory : groups_1


Home Index