Nuprl Lemma : nat_subtype
ℕ ⊆r |(<ℤ+>↓hgrp)|
Proof
Definitions occuring in Statement : 
int_add_grp: <ℤ+>, 
hgrp_of_ocgrp: g↓hgrp, 
grp_car: |g|, 
nat: ℕ, 
subtype_rel: A ⊆r B
Definitions unfolded in proof : 
nat: ℕ, 
grp_car: |g|, 
pi1: fst(t), 
hgrp_of_ocgrp: g↓hgrp, 
hgrp_car: |g|+, 
grp_leq: a ≤ b, 
int_add_grp: <ℤ+>, 
grp_le: ≤b, 
pi2: snd(t), 
grp_id: e, 
infix_ap: x f y, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
subtype_rel_sets, 
le_wf, 
assert_wf, 
le_int_wf, 
assert_of_le_int
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
because_Cache, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
setElimination, 
rename, 
setEquality, 
lambdaFormation, 
productElimination
Latex:
\mBbbN{}  \msubseteq{}r  |(<\mBbbZ{}+>\mdownarrow{}hgrp)|
Date html generated:
2018_05_21-PM-03_14_17
Last ObjectModification:
2018_05_19-AM-08_26_15
Theory : groups_1
Home
Index