Nuprl Lemma : nat_subtype
ℕ ⊆r |(<ℤ+>↓hgrp)|
Proof
Definitions occuring in Statement : 
int_add_grp: <ℤ+>
, 
hgrp_of_ocgrp: g↓hgrp
, 
grp_car: |g|
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
Definitions unfolded in proof : 
nat: ℕ
, 
grp_car: |g|
, 
pi1: fst(t)
, 
hgrp_of_ocgrp: g↓hgrp
, 
hgrp_car: |g|+
, 
grp_leq: a ≤ b
, 
int_add_grp: <ℤ+>
, 
grp_le: ≤b
, 
pi2: snd(t)
, 
grp_id: e
, 
infix_ap: x f y
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
subtype_rel_sets, 
le_wf, 
assert_wf, 
le_int_wf, 
assert_of_le_int
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
because_Cache, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
setElimination, 
rename, 
setEquality, 
lambdaFormation, 
productElimination
Latex:
\mBbbN{}  \msubseteq{}r  |(<\mBbbZ{}+>\mdownarrow{}hgrp)|
Date html generated:
2018_05_21-PM-03_14_17
Last ObjectModification:
2018_05_19-AM-08_26_15
Theory : groups_1
Home
Index