Nuprl Lemma : mon_assoc
∀[g:IMonoid]. ∀[a,b,c:|g|].  ((a * (b * c)) = ((a * b) * c) ∈ |g|)
Proof
Definitions occuring in Statement : 
imon: IMonoid
, 
grp_op: *
, 
grp_car: |g|
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
assoc: Assoc(T;op)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
imon: IMonoid
, 
monoid_p: IsMonoid(T;op;id)
, 
and: P ∧ Q
Lemmas referenced : 
imon_properties, 
grp_car_wf, 
imon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
isect_memberEquality, 
axiomEquality, 
productElimination
Latex:
\mforall{}[g:IMonoid].  \mforall{}[a,b,c:|g|].    ((a  *  (b  *  c))  =  ((a  *  b)  *  c))
Date html generated:
2016_05_15-PM-00_06_44
Last ObjectModification:
2015_12_26-PM-11_47_10
Theory : groups_1
Home
Index