Nuprl Lemma : mon_assoc

[g:IMonoid]. ∀[a,b,c:|g|].  ((a (b c)) ((a b) c) ∈ |g|)


Proof




Definitions occuring in Statement :  imon: IMonoid grp_op: * grp_car: |g| uall: [x:A]. B[x] infix_ap: y equal: t ∈ T
Definitions unfolded in proof :  assoc: Assoc(T;op) uall: [x:A]. B[x] member: t ∈ T imon: IMonoid monoid_p: IsMonoid(T;op;id) and: P ∧ Q
Lemmas referenced :  imon_properties grp_car_wf imon_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename isect_memberEquality axiomEquality productElimination

Latex:
\mforall{}[g:IMonoid].  \mforall{}[a,b,c:|g|].    ((a  *  (b  *  c))  =  ((a  *  b)  *  c))



Date html generated: 2016_05_15-PM-00_06_44
Last ObjectModification: 2015_12_26-PM-11_47_10

Theory : groups_1


Home Index