Step
*
1
of Lemma
mon_itop_op
1. g : IAbMonoid
2. a : ℤ
⊢ ∀[b:ℤ]
∀[E,F:{a..b-} ⟶ |g|]. ((Π a ≤ i < b. E[i] * F[i]) = ((Π a ≤ i < b. E[i]) * (Π a ≤ i < b. F[i])) ∈ |g|)
supposing a ≤ b
BY
{ ((BLemma `int_le_to_int_upper_uniform`) THENA Auto) }
1
1. g : IAbMonoid
2. a : ℤ
⊢ ∀[b:{a...}]. ∀[E,F:{a..b-} ⟶ |g|]. ((Π a ≤ i < b. E[i] * F[i]) = ((Π a ≤ i < b. E[i]) * (Π a ≤ i < b. F[i])) ∈ |g|)
Latex:
Latex:
1. g : IAbMonoid
2. a : \mBbbZ{}
\mvdash{} \mforall{}[b:\mBbbZ{}]
\mforall{}[E,F:\{a..b\msupminus{}\} {}\mrightarrow{} |g|].
((\mPi{} a \mleq{} i < b. E[i] * F[i]) = ((\mPi{} a \mleq{} i < b. E[i]) * (\mPi{} a \mleq{} i < b. F[i])))
supposing a \mleq{} b
By
Latex:
((BLemma `int\_le\_to\_int\_upper\_uniform`) THENA Auto)
Home
Index