Step
*
of Lemma
mon_itop_split
∀[g:IMonoid]. ∀[a,b,c:ℤ].
(∀[E:{a..c-} ⟶ |g|]. ((Π a ≤ j < c. E[j]) = ((Π a ≤ j < b. E[j]) * (Π b ≤ j < c. E[j])) ∈ |g|)) supposing
((b ≤ c) and
(a ≤ b))
BY
{ ProveSpecializedLemma `itop_split` 0 [parm{i}] (FoldC `mon_itop`) }
Latex:
Latex:
\mforall{}[g:IMonoid]. \mforall{}[a,b,c:\mBbbZ{}].
(\mforall{}[E:\{a..c\msupminus{}\} {}\mrightarrow{} |g|]
((\mPi{} a \mleq{} j < c. E[j]) = ((\mPi{} a \mleq{} j < b. E[j]) * (\mPi{} b \mleq{} j < c. E[j])))) supposing
((b \mleq{} c) and
(a \mleq{} b))
By
Latex:
ProveSpecializedLemma `itop\_split` 0 [parm\{i\}] (FoldC `mon\_itop`)
Home
Index