Nuprl Lemma : mon_nat_op_one

[g:IMonoid]. ∀[e:|g|].  ((1 ⋅ e) e ∈ |g|)


Proof




Definitions occuring in Statement :  mon_nat_op: n ⋅ e imon: IMonoid grp_car: |g| uall: [x:A]. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T imon: IMonoid squash: T prop: nat_plus: + less_than: a < b less_than': less_than'(a;b) true: True and: P ∧ Q subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q subtract: m top: Top infix_ap: y
Lemmas referenced :  grp_car_wf imon_wf equal_wf squash_wf true_wf mon_nat_op_unroll less_than_wf iff_weakening_equal add-commutes grp_op_wf mon_nat_op_zero mon_ident
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination voidElimination voidEquality

Latex:
\mforall{}[g:IMonoid].  \mforall{}[e:|g|].    ((1  \mcdot{}  e)  =  e)



Date html generated: 2017_10_01-AM-08_16_27
Last ObjectModification: 2017_02_28-PM-02_01_00

Theory : groups_1


Home Index