Nuprl Lemma : mon_nat_op_one
∀[g:IMonoid]. ∀[e:|g|].  ((1 ⋅ e) = e ∈ |g|)
Proof
Definitions occuring in Statement : 
mon_nat_op: n ⋅ e
, 
imon: IMonoid
, 
grp_car: |g|
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
imon: IMonoid
, 
squash: ↓T
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
subtract: n - m
, 
top: Top
, 
infix_ap: x f y
Lemmas referenced : 
grp_car_wf, 
imon_wf, 
equal_wf, 
squash_wf, 
true_wf, 
mon_nat_op_unroll, 
less_than_wf, 
iff_weakening_equal, 
add-commutes, 
grp_op_wf, 
mon_nat_op_zero, 
mon_ident
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
voidElimination, 
voidEquality
Latex:
\mforall{}[g:IMonoid].  \mforall{}[e:|g|].    ((1  \mcdot{}  e)  =  e)
Date html generated:
2017_10_01-AM-08_16_27
Last ObjectModification:
2017_02_28-PM-02_01_00
Theory : groups_1
Home
Index