Nuprl Lemma : mon_nat_op_wf2
∀[g:IMonoid]. ∀[n:|(<ℤ+>↓hgrp)|]. ∀[e:|g|].  (n ⋅ e ∈ |g|)
Proof
Definitions occuring in Statement : 
int_add_grp: <ℤ+>
, 
mon_nat_op: n ⋅ e
, 
hgrp_of_ocgrp: g↓hgrp
, 
imon: IMonoid
, 
grp_car: |g|
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
imon: IMonoid
Lemmas referenced : 
mon_nat_op_wf, 
grp_car_subtype, 
grp_car_wf, 
hgrp_of_ocgrp_wf, 
int_add_grp_wf2, 
imon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[g:IMonoid].  \mforall{}[n:|(<\mBbbZ{}+>\mdownarrow{}hgrp)|].  \mforall{}[e:|g|].    (n  \mcdot{}  e  \mmember{}  |g|)
Date html generated:
2018_05_21-PM-03_14_30
Last ObjectModification:
2018_05_19-AM-08_26_34
Theory : groups_1
Home
Index