Nuprl Lemma : mon_nat_op_wf2

[g:IMonoid]. ∀[n:|(<ℤ+>↓hgrp)|]. ∀[e:|g|].  (n ⋅ e ∈ |g|)


Proof




Definitions occuring in Statement :  int_add_grp: <ℤ+> mon_nat_op: n ⋅ e hgrp_of_ocgrp: g↓hgrp imon: IMonoid grp_car: |g| uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B imon: IMonoid
Lemmas referenced :  mon_nat_op_wf grp_car_subtype grp_car_wf hgrp_of_ocgrp_wf int_add_grp_wf2 imon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry setElimination rename isect_memberEquality because_Cache

Latex:
\mforall{}[g:IMonoid].  \mforall{}[n:|(<\mBbbZ{}+>\mdownarrow{}hgrp)|].  \mforall{}[e:|g|].    (n  \mcdot{}  e  \mmember{}  |g|)



Date html generated: 2018_05_21-PM-03_14_30
Last ObjectModification: 2018_05_19-AM-08_26_34

Theory : groups_1


Home Index